FILTER KIT
OPERATING MANUAL
REV. 3
REVISION HISTORY

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>DATE</th>
<th>REVISION DESCRIPTION</th>
<th>SIGNATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 April 2010</td>
<td>Draft</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13 July 2010</td>
<td>Add mounting bracket</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update flow meter to Insite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add assembly drawings</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9 November 2011</td>
<td>Update Drawings</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

- REVISION HISTORY ... 2
- FOR YOUR SAFETY .. 4
- INSTALLATION.. 5
- OPERATION... 6
- MAINTENANCE... 6
- COMPONENT INFORMATION ... 7
- DRAWINGS... 9
FOR YOUR SAFETY

1. Signs and Symbols:

Throughout the operating manual, the information and notices below are identified by graphical symbols.

DANGER!
Safety note indicating imminent danger. Failure to heed the warning may result in serious bodily injury and even death.

CAUTION!
Safety note indicating the presence of potential hazard. Failure to heed the safety notice may result in minor bodily injury or damage to the equipment.

INFORMATION!
This symbol identifies important information or a useful tip concerning the application or service of the unit.

2. Safety Notes:

For the installation and operation of the Filter Kit, the following regulations and safety notes have to be observed.

Any work on the Filter may only be performed by qualified personnel. All relevant accident prevention regulations have to be observed.

Any national regulations applicable in the country of installation must be observed.
INSTALLATION

1. The Filter Kit consists of a cartridge filter, block and bypass valves, and flow meter. This protects the HEC from contamination and allows routine verification of proper flow for service and maintenance.

2. The Filter Kit should be wall mounted and piped between the external Heat Exchanger and the HEC in the equipment room. The Filter Kit must be installed indoors only. The filter mount and pipe clamp must be used to support the piping. Align the flow meter outlet clamp carefully to avoid stress on the flow meter.

Figure 1
3. Teflon tape only should be used for sealing threaded joints. Vapors from pipe dope or PVC cement will damage the flow meter. If cement must be used, allow the cement to dry completely and purge fumes before installing the flow meter.

Caution: Make sure all piping is clean before installation.

OPERATION

1. Open filter valves and close bypass valve for normal operation.
2. Open bypass valve then close filter valves for cartridge replacement only.
3. Observe the fluid flow on the meter provided.

MAINTENANCE

1. Replace filter cartridges after first day of operation. Replace filter cartridges monthly thereafter. If no loose sediment is in the housing, replace cartridges without draining fluid from housing. If any loose sediment is in the housing, dispose of the fluid and replace the cartridge. Carefully reposition the O-ring to maintain seal. Replace the O-ring if damaged.

Caution: Remove cartridge housing slowly as filter housing may still be under pressure.

2. If housing is drained, check fluid level in external Heat Exchanger reservoir. If level is low refill according to the filling instructions in the Heat Exchanger Owner’s Manual to maintain proper glycol concentration.
COMPONENT INFORMATION
Installation and Maintenance Instructions for series PX (PVC) and IS (Polysulfone) Insite Flow Meters

This flow meter can be used to read flows of water, or air directly from the calibrated scale. Do not exceed pressures shown.

NOTE: Yellow labels indicate PVC construction, Blue is for Polysulfone.
HOW IT WORKS

Fluid enters at end marked “IN” and forces the piston to move with it, against spring pressure, enough to pass given flow around piston periphery. The knife edge of the piston is visible through the transparent housing; its position under the printed scale gives the flow rate.

Installation

Inlet and outlet ends are marked on the flow meter body, and an arrow on the printed scale indicates flow direction. Insite flow meters can be mounted in any convenient orientation (vertical, horizontal or anything in-between) without affecting performance.

The end fittings are connected to the plastic body with O-ring sealed straight threads and don’t need to be highly torqued to prevent leakage, or require any other kind of sealant such as Teflon tape or pipe dope.

These end fittings accept pipe with tapered threads (NPT). Teflon tape should be used on the pipe threads and standard torques applied, to make leak-free connections.

Put your wrench only on the end fitting when piping meter inline. Do not apply wrenches on the plastic body when connecting to pipe, only end fittings.

Many users find that a disconnect fitting, installed upstream of the flow meter, makes for easier removal of the flow meter, for cleaning internals. Control valves should be installed downstream of the flow meters.

Maintenance

Normally, the only servicing required is a periodic cleaning of the tube and three internal parts. Use wrenches on the end fittings to remove the flow meter from the line. Do not apply wrenches to the plastic body when breaking pipe connections, only end fittings.

With the flow meter out of the line, completely remove the end fitting from the outlet end of the tube. Use a bent wire or other hook to grab the shaft, piston and spring and remove from tube. Inspect all parts for damage. The interior of the tube can be swabbed out, and the parts wiped off, with a soft dry cloth. If dirt or residue cannot be removed with a dry cloth, use water and a mild non-abrasive soap. **DO NOT USE SOLVENT OF ANY KIND.** Replace any worn or damaged parts.

When reassembling the Insite flow meter, be sure the piston is installed as shown in the drawing. Don’t put in upside down. Inspect O-rings for damage and replace if necessary. Wet O-rings with water prior to assembly to improve sealing.

Fluid Temp.	**Max. Pressure**	**Liquid**	**Air**
°F | **°C** | **PSIG** | **kPa** | **PSIG** | **kPa**
PVC
70 | 21 | 200 | 13380 | 100 | 690
100 | 38 | 100 | 690 | 50 | 345
125 | 52 | 75 | 518 | 35 | 241
150 | 65 | 50 | 345 | 25 | 172
POLYSULFONE
230 | 110 | 250 | 1724 | 125 | 862

Correction factors when monitoring air flow at other than 90 PSIG at 70°F

TABLE 1 PRESSURE

<table>
<thead>
<tr>
<th>PSIG</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>.49</td>
<td>.58</td>
<td>.65</td>
<td>.72</td>
<td>.79</td>
<td>.84</td>
<td>.90</td>
<td>.95</td>
<td>1.00</td>
<td>1.05</td>
<td>1.09</td>
<td>1.13</td>
<td>1.16</td>
</tr>
</tbody>
</table>

TABLE 2 TEMPERATURE

<table>
<thead>
<tr>
<th>Temp°F</th>
<th>30</th>
<th>50</th>
<th>70</th>
<th>90</th>
<th>100</th>
<th>120</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>1.04</td>
<td>1.02</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>0.96</td>
<td>0.95</td>
</tr>
</tbody>
</table>

When operating at a pressure other than 90 PSIG, or a temperature other than 70°F, multiply the applicable factor to the SCFM reading on the tube for corrected SCFM reading.

The Air flow meter is calibrated (reading in SCFM/SLPM), at 90 PSI pressure and 70°F temperature.

If the flow meter is used with air at pressures and/or temperatures that differ from the above, correction factors can be applied to 90-PSI air scale readings to get correct SCFM values. See Tables 1 and 2 below.

DIMENSIONS. Approximate in inches.

Small Size

Large Size

(PVC Matl. only)

Consult factory for dimensions with switch mount.
For Electric Signalling

Switch Kits: Flow meters can be equipped with one or two electric switches so that any flow rate within the range of the meter can be made to trigger a signal (or signals). Switch settings are easily adjusted. Switches are supplied in kit form for installation in the field.

Each switch kit consists of a ring shaped ceramic magnet, that fits around the flow meter piston, and a proximity switch in a housing that clamps to the body of the flow meter. As the magnet moves with the piston, its field trips the proximity switch. An adjustment screw changes the actuation point by moving the switch.

Switch contact ratings (max.) are 8 watts @ 120 VAC/100 VDC. Do not exceed 8 watts with any combination of specified volts or current. Switch has three wires: Black for normally open, Blue for normally closed, and White for common. Switch specs contact ratings: 12VDC @ .66 A, 28 VDC @ .285 A, 120 VAC @ .066 A (at 77 F).

For 3 to 15 GPM
Order No. ISS-15-B.
For 20 to 50 GPM
Order No. ISS-50-B

NOTE: Switch has a 25% of full scale operating band. Within the band, the relay activates. Above and below the band, the relay deactivates. Thus, one switch can be used as a deviation alarm.

SWITCH INSTALLATION

Step 1. Installing the magnet. You must disassemble the flow meter to do this. Follow instructions found under the heading “Maintenance” on page 3. Remove piston from the shaft and place the magnet between piston and spring. Be sure that the piston is installed as in the drawing (page 4), and the spring is seated on the magnet and piston. Insert into tube and replace outlet end fittings.

Step 2. Installing the foam gasket. It has an adhesive on one side, covered with a protective paper. Peel off and press the gasket firmly into place on the switch housing.

Step 3. Installing the switch housing(s) on the flow meter body.

(A) Single switch: push the capscrews through the switch housing tabs, and thread them into the half-collars, as shown. Use the washers provided. The nuts may be discarded.

(B) Dual switches, match up the tabs on the two switch housings and push the capscrews through both collar tabs. Put the nuts on the threaded ends of the capscrews and tighten. Use the washers provided. (The half-collars and extra magnet may be discarded.)

NOTE: There is no “wrong orientation” of the switch housing. If you are installing two switch housings, they can both be oriented the same way, as in the photo, or one “up” and the other “down”. Install to suit your needs in wiring and switch adjustment.

SETTING THE SWITCH POINTS

Flow meter installed:
Simply adjust the amount of flow to move the piston to the level on the indicator where a switch signal is desired, then turn the switch adjustment screw until switch actuates. (Switch moves toward the adjustment screw head as you turn it clockwise. Use an ohmmeter to determine actuation.) If you are using two switches, repeat procedure for second switch.

Flow meter NOT installed:
Simulate flow by pushing the eraser-end of a pencil (or a similar tool) through the inlet end of the tube, contacting the float, and moving it against the spring pressure until the knife edge of the float is at the desired reading on the scale. (If your unit has a 1/2 in. pipe fitting, remove it to gain better access.) Then, turn the switch adjustment screw till the switch actuates. (Switch moves toward the adjustment screw head as you turn it clockwise. Use an ohmmeter to determine actuation.) If you are using two switches, repeat procedure for second switch.

When connecting the switch wires, leave enough lead length (as a pigtail) to allow full travel of the switch.

Insite Switch Replacement Parts

<table>
<thead>
<tr>
<th>Part Description</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>1</td>
</tr>
<tr>
<td>Gasket</td>
<td>2</td>
</tr>
<tr>
<td>Magnet</td>
<td>3</td>
</tr>
<tr>
<td>Half-collars (2)</td>
<td>4</td>
</tr>
<tr>
<td>Capscrews (4)</td>
<td>5</td>
</tr>
<tr>
<td>Capscrew nuts (2)</td>
<td>6</td>
</tr>
<tr>
<td>Switch</td>
<td>7</td>
</tr>
<tr>
<td>Switch carrier</td>
<td>8</td>
</tr>
<tr>
<td>Adjustment screw</td>
<td>9</td>
</tr>
<tr>
<td>O-ring (2)</td>
<td>10</td>
</tr>
<tr>
<td>Retainer clip</td>
<td>11</td>
</tr>
<tr>
<td>Lockwashers (4)</td>
<td>12</td>
</tr>
<tr>
<td>1/2” NPTF conduit connection</td>
<td>13</td>
</tr>
</tbody>
</table>

Insite Switch Parts Description

MAGNET (ONLY) Part # 1122
SWITCH (ONLY) Part # 1127
REPLACEMENT PART NUMBERS FOR MODEL CODES

<table>
<thead>
<tr>
<th>PARTS DESCRIPTION</th>
<th>PX-3, 5, 10, and 15</th>
<th>PX-20, 30, 40 and 50</th>
<th>IS-5, 10, and 15</th>
<th>IS-20, 30, 40 and 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Tube Assembly</td>
<td>1161-AS</td>
<td>1155-AS</td>
<td>1119-AS</td>
<td>1173-AS</td>
</tr>
<tr>
<td>with Max. Flow</td>
<td>1160-AS</td>
<td>1106-AS</td>
<td>1117-AS</td>
<td>1176-AS</td>
</tr>
<tr>
<td>Reading</td>
<td></td>
<td>1147-AS</td>
<td>1148-AS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1149-AS</td>
<td>1150-AS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUBE MATERIAL</td>
<td>1194-4</td>
<td>1194-6</td>
<td>1194-8</td>
<td>1194-12</td>
</tr>
<tr>
<td>Aluminum</td>
<td>1193-4</td>
<td>1193-6</td>
<td>1193-8</td>
<td>1193-12</td>
</tr>
<tr>
<td>Brass</td>
<td>1198-4</td>
<td>1198-6</td>
<td>1198-8</td>
<td>1198-12</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>1193-4</td>
<td>1193-6</td>
<td>1193-8</td>
<td>1193-12</td>
</tr>
<tr>
<td>1/2</td>
<td>1191-4</td>
<td>1191-6</td>
<td>1191-8</td>
<td>1191-12</td>
</tr>
<tr>
<td>3/4</td>
<td>1173-4</td>
<td>1173-6</td>
<td>1173-8</td>
<td>1173-12</td>
</tr>
<tr>
<td>1</td>
<td>1174-4</td>
<td>1174-6</td>
<td>1174-8</td>
<td>1174-12</td>
</tr>
<tr>
<td>1-1/2</td>
<td>1175-4</td>
<td>1175-6</td>
<td>1175-8</td>
<td>1175-12</td>
</tr>
<tr>
<td>* PVC Viton® Seal</td>
<td>1112 396</td>
<td>1112 396</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not Available on IS Units

MODEL CODE DESCRIPTION:
Select appropriate symbols, and build an ordering code as shown.

EXAMPLE: PX - 30 GPM - 8 - F - F - IS2

- TUBE MATERIAL
 - PVC (Flows from 3 to 50 GPM) = PX
 - Polysulfone (from 5 to 50 GPM) = IS

- MAX FLOW SIZE & UNITS
 - (Consult factory for calibrated increments)
 - Small Series
 - WATER
 - 3, 5, 10, 15 GPM = 20, 30, 40, 50 GPM
 - 20, 38, 55 LPM = 75, 110, 150, 200 LPM
 - AIR
 - 50, 90, 100, 150 SCFM = 200, 300, 400, 500 SCFM
 - 1400, 3000, 4200 SLPM = 5500, 8000, 11000, 14000 SLPM

* PVC Tube material only (series PX)

- SPECIAL OPTIONS:
 - (No Symbol = None)
 - IS1 = Installed with One Switch Kit
 - IS2 = Installed with Two Switch Kit
 - ST = Stainless Steel Identification Tag
 - VPB = Brass ball valve with pressure gauge
 - VPS = Stainless ball valve with pressure gauge

- SEAL MATERIAL
 - F = Viton®
 - Other Consult factory

- FITTING MATERIAL
 - D = Aluminum
 - F = Brass
 - I = 316 stainless
 - V = PVC plastic (N/A on IS series)

- PORT SIZE (NPT)
 - 4 = 1/2 (small series only)
 - 6 = 3/4
 - 8 = 1
 - 12 = 1-1/2 (large series only)
SHIPS ALL COMPONENTS LOOSE

INSTALL (4) 1/4-20 RIVNUTS ON 445115-1 PRIOR TO SHIPPING TO CUSTOMER.

PACKAGE REQUIRED FASTNERS PRIOR TO SHIPPING FOR CUSTOMER INSTALLATION.
1-1/2" FLUID INLET FROM HEAT EXCHANGER

FLUID OUTLET TO HEC CUSTOMER SUPPLIED 1-1/2" PIPE TO MACHINE

FOR ORDERING PURPOSES, ORDER ASSEMBLY 0444051
MOUNT TO STUDS 16" ON CENTER WITH 161 1/4" LAG BLOTS